2021 Seed Grants

Massive-scale discovery of new species in our own backyard: towards improved estimates of the global “pie of life.”  Dr. Andrew A. Forbes, Department of Biology, University of Iowa

The number of species on Earth and where they live is fundamental to global conservation efforts but remains hotly contested. The core impediment has been that most of life is small and occupies specialized habitats, including inside other organisms, thus eluding detection. New models suggest that accurate estimates of global biodiversity depend on discovering how many specialist symbiotic mites, nematodes, protists, fungi, and bacteria live inside the average species of insect, but these ratios of symbionts to insect hosts are largely unknown. We are developing a suite of specific PCR primer sets that will allow us to detect the full array of symbionts within insects and calculate how specialized each symbiont is to its host. I propose to pioneer this technique on a large collection of insects collected at the UI’s Ashton Prairie site. Resulting data will be used to seek funds for collection of similar data at sites worldwide. - $22,270

Using Digital Twins to Make Cities More Sustainable and Resilient  Dr. Joe Gomes, Department of Chemical and Biochemical Engineering, University of Iowa; Dr. Gregory Carmichael, Department of Chemical and Biochemical Engineering, University of Iowa

We are requesting funds to develop a prototype digital twin for urban applications and demonstrate the power of such a tool in answering complex and pressing problems related to sustainability and resilience. The digital twin proposed here is a virtual representation of an urban system, which mirrors complex interactions between multiple hazards such as air pollution, climate change and disease exposure in actual urban environments, and enables analysis of impacts in the context of such multiple hazards. We will combine physical based models of air quality, weather and climate, with modern spatial/temporal machine learning. Multiple sources of data will be used, including new satellite capabilities (Kim et al., 2020) that can detect air pollutants, routine air quality monitors, low cost sensors, urban mobility data, traffic patterns, and socio-economic information. The data and models will be used together for the analysis of multi-hazard impacts and risks and to evaluate various interventions in terms of sustainability and resilience, consistent with the United Nations sustainable development goals (Sachs et al., 2019). - $28,239

Effects of Wind-Wave Environment on Power Generation and Wake Aerodynamics for Offshore Wind Energy  Dr. Corey D. Markfort, Department of Civil and Environmental Engineering, University of Iowa

The Environmental Fluid Mechanics and Renewable Energy Lab at IIHR proposes a series of experiments that will for the first time investigate the interactions between theatmospheric boundary layer (ABL), surface water waves, and wind turbines. The experiments will be conducted in our ABL wind-wave tunnel using multiphase, time resolved,stereo particle image velocimetry (TR-SPIV), to measure the 3D turbulent flow field upwind and in the wake of a scale model offshore wind turbine. The unique data will provide valuable insights into the dynamics and interactions between wind turbines in the offshore environment with coupled wind and waves. We request funds to support a graduate research assistant to perform analyses of the turbine power performance and flow field upwind and in the wake of a model turbine under varying wind-wave conditions. The data will allow us to test recently proposed wind power and wind turbine wake models to optimize offshore wind power plant arrays. - $30,000

Developing an approach for quantifying iron mass fluxes between aquifers and ferruginous lakes to improve constraints on biogeochemical cycling  Dr. Jessica Meyer, Department of Earth and Environmental Sciences, University of Iowa

Poorly constrained estimates of solute exchange between groundwater and lakes limits insights into the cycling of redox active elements, particularly under changing hydrologic conditions. My overarching goal is to develop a comprehensive approach for quantifying solute exchanges between groundwater and lakes. As an initial step, this research focuses on developing an approach to characterize the scale of spatial heterogeneity in iron mass flux between groundwater and a ferruginous lake. The approach emphasizes collection of high-resolution hydrogeological data along a transect using tools adapted from studies of point source groundwater contaminant plumes. The research will quantify the scale of heterogeneity in iron mass flux upgradient of a discharge area and assess geologic and hydrogeologic controls on the spatial patterns of iron mass flux into the lake. These research products are critical to estimating iron budgets in ferruginous lakes and for studies focused on the impact of environmental change on biogeochemical cycles. - $30,000

Linking predators and prey through physiological performance to predict the effects of climate change  Dr. Eric Riddell, Department of Ecology, Evolution, and Organismal Biology, Iowa State University

Insectivorous birds, such as tree swallows (Tachycineta bicolor), have experienced dramatic declines over the last several decades from the direct and indirect effects of climate change. Like many migratory birds, tree swallows are migrating earlier as spring advances earlier into winter. Cold snaps are more likely during the early spring and impact birds by challenging their ability to maintain a stable body temperature while simultaneously causing mortality and reduced activity in their insect prey. These complex interactions between the physiological effects of climate change and species interactions requires sophisticated approaches to predict future population declines as climate change accelerates over the next century. Our project addresses these issues by (1) studying the thermal physiology of tree swallows and their prey and (2) developing a simulation-based approach that uses physiology to predict population declines of birds based on interactions with insect prey across landscapes under climate change. - $29,748

Year: 

Friday, January 1, 2021