2008 Seed Grant Awards

In 2008, CGRER awarded five seed grants totaling $143,873.

Development of Prototype Instrumentation for Ultra-High Resolution Measurement of Land Surface Relief

Studies of land-atmosphere interactions, and surface-fluid processes such as soil erosion, are limited by researchers’ abilities to characterize the shape and roughness of the Earth’s surface. William EichingerWitold KrajewskiThanos Papanicolaou, and Anton Kruger developed instrumentation capable of mapping small areas (about 50 square meters) at extremely high resolution (less than 1 centimeter). Most of the funding was used to construct a portable framework to hold and move a lidar (light-radar) measuring instrument over the study area. The lidar instrument bounced a pulse of light off the soil surface, and mapped soil roughness by measuring the light’s return time.

Tailoring the Surface Properties of Nanocrystalline Zeolites for Environmental Applications: Insights from DFT Calculations

Zeolites are alumino-silicates with very large surface areas that are already widely used in catalysis and in water softeners. Sarah Larsen’s research project involved very small zeolites — nanocrystalline zeolites with crystal sizes less than 100 nm in diameter. These tiny particles are porous, but have large surface areas and decreased diffusion path lengths relative to microcrystalline zeolites. As such, they can be tailored to environmental applications, such as adsorption of air or water pollutants. The study used DFT (Density Functional Theory) calculations to model surface properties of functionalized nanocrystalline zeolites, so that their properties could be optimized for these environmental applications.

Climate Change Impacts on Cold Season Hydrologic Processes and Spring Soil Moisture Recharge in the Upper Midwest

This grant, awarded to Kristie Franz, initiated studies of past and projected changes in the Midwest’s cold-season climate: its snow cover, snow melt rates, and frozen ground traits. These traits are crucial to understanding spring soil-moisture recharge, spring flooding, and water availability to summer crops, yet Midwestern cold-season climate has not been previously studied in much depth. Weather records for the past 50 years were used to assess and model historic weather, stream flow, and soil moisture trends for six Minnesota and Iowa watersheds; hydrological models were then used to estimate expected climate-change-related alterations of 2041-2070 cold-season hydrologic processes. Such models are vital for assessing the impact of a changing climate on the water cycle, thereby producing information that could guide future land use and natural disaster planning.

Discovering the Vertical Dimension of Atmospheric New Particle Formation: Aircraft Profiling Proof of Concept

Ultrafine atmospheric particles play important roles in regulating climate because they are potential seeds for cloud droplet formation. However, although the technology for counting these very small particles became available a decade ago, concentrations of ultrafines throughout the atmosphere have never been systematically measured in the Midwest.Charles Stanier’s grant allowed the first such Midwestern tests, which were performed from the ground up to a five kilometer elevation. These measurements helped address one of the largest uncertainties in climate-change assessments and models.

Observations on the Movement of Bedload Using Motion-Sensing Radio Transmitters

Characterizing the movement of sediment along river bottoms has always posed a challenge: The movement of these bouncing particles is confounded by both the variability of the bed material itself and by stream flow’s turbulent nature.Thanos Papanicolaou and Jerald Schnoor developed techniques to use thousands of minute, motion-sensing, radio-tracking techniques (Radio Frequency Identification systems) to simulate individual sand-sized sediment particles and to study their movement. Their use enabled the researchers to study the displacement, rate of motion, and pathways of individual sediment particles, and fed into predictive models of sediment movement. In future years, this technology could be used for applications-oriented field monitoring of sediments.

Year: 

Tuesday, January 1, 2008