2012 Seed Grant Awards

2012 CGRER Seed Grants - $159,819

Evaluating the Hydrologic Performance of Bioretention Cells for Mitigating Urban Stormwater Runoff – E. Arthur Bettis III, Department of Geoscience, University of Iowa

Bioretention cells are a best management practice (BMP) used to reduce urban stormwater runoff to streams.  Adoption of this BMP has been spotty across the nation and few studies have been undertaken to quantitatively evaluate the performance of bioretention cells (biocells), or to document the effects of environmental conditions on materials used to construct biocells. One part of the proposed project is a series of field experiments designed to determine the water budget for an existing biocell and to see how effective the structure is for reducing thermal shock to streams from pavement runoff.  The second part of the project is a laboratory experiment designed to evaluate the effects of freeze-thaw cycles and runoff sediment input on the infiltration capacity of biosoil mixtures. Results of the project will provide important information for biocell design in temperate climates and will contribute to understanding how properties of biocell materials change with time.  $21,068

Working Toward a Sustainable Iowa:  An Assessment of Public Attitudes Toward Water Sustainability – Kajsa E. Dalrymple, School of Journalism and Mass Communication, University of Iowa

Research has consistently shown that public opinion toward science and the environment can be very influential on public support of research, behaviors, and future policy decisions. Although many scholars and agencies are focused on encouraging water sustainability in the state of Iowa, there is a paucity of research examining public concerns about water sustainability issues, opinion towards policy, and understanding of the water problems that face the state. Working with researchers at the university and various environmental agencies throughout the state, this project proposes the implementation of a statewide public opinion survey examining understanding of and opinion towards water sustainability. Such research will not only provide a baseline understanding of opinion towards water sustainability issues in the state of Iowa, but will also help identify appropriate methods of communicating with various public groups during future informational campaigns and university outreach efforts.  $30,000

Modeling Hydrologic Systems in Elementary Science (MoHSES):  A Pilot Study – Cory T. Forbes, Department of Teaching and Learning, University of Iowa

Students in Kindergarten through 12th-grade should engage in the construction, use, evaluation, and revision of scientific models to develop disciplinary conceptual understanding within the geosciences.  However, science classrooms rarely engage students in model-based reasoning.  There is a clear need for more research that can inform efforts to design science curriculum and instruction that engages students in scientific modeling, particularly elementary students (grades K-5). Using multiple research methods grounded in a case study design framework, I will investigate 3rd-grade students’ model-based reasoning about one component of hydrologic systems – groundwater. This project is a direct response to calls for research on students’ participation in and learning about scientific practices, will make important contributions to the knowledge bases in the fields of science education and the learning sciences, addresses CGRER’s stated research and educational outreach goals, and will provide pilot data necessary to develop and submit future proposals to external funding agencies.  $29,987

Investigations of Uranium Complexation for Enhanced Transport Modeling and Environmental Remediation of Nuclear Materials – Tori Z. Forbes, Department of Chemistry, University of Iowa

The mobility of uranium in natural aqueous systems is greatly enhanced by complexation with naturally occurring organic compounds, such as citrate, but the structural characteristics of the relevant molecular species are currently unknown. There is a critical need, to determine the structural nature of these complexes to provide detailed information regarding the speciation of uranium in aqueous systems. The long-term goal of my research program is to provide a molecular-level understanding of actinide complexes in aqueous solutions to improve containment strategies and facilitate environmental remediation of nuclear materials from groundwater systems. My objective in this proposal is to synthesize and structurally characterize uranyl citrate complexes and directly compare the results to species that are likely present in solution. The rationale for this project is that its completion will improve our functional knowledge regarding uranium complexation and provide enhanced information for transport modeling and remediation strategies.  $29,896

Climate Change, Spring Persistence and Conservation in the Kunene Region:  Assessing the Sensitivity of Springs to Climate change in Arid Western Namibia – Peter J. Jacobson, Department of Biology, Grinnell College; Keith E. Schilling, Iowa Geological and Water Survey; Werner Kilian, Etosha Ecological Institute, Namibia; Jeff Muntifering, Save the Rhino Trust, Namibia; and Mary Seely, Desert Research Foundation of Namibia

This research will assess the sustainability of key springs used by people and wildlife in the Namib Desert in western Namibia. Current and projected climatic trends suggest greater aridity within an already arid to hyper-arid ecosystem. Changes in precipitation and groundwater recharge could have serious negative implications for the region’s inhabitants. The study will use physical and chemical measurements to assess hydrogeologic properties of the region’s springs and potential responses to hydroclimatic alterations. Combined with site surveys and existing physical and biological datasets, this will permit an examination of how climate change may affect one of Namibia’s most important regions for conservation and tourism, a site with global conservation significance. We will compile and analyze key digital datasets (e.g., topography, geology) and field surveys of the springs’ physical and chemical characteristics to assess susceptibility to drying. The results will elucidate the influence of spring persistence on landscape connectivity with respect to key elements of the regional biota, including elephant, mountain zebra and rhinoceros.  $24,800

Year: 

Sunday, January 1, 2012