2013 Seed Grant Awards

2013 CGRER Seed Grants - $149,145

Use of Waste Heat to Sustainably Generate High Quality Effluent for Aquifer Recharge – Daivd M. Cwiertny and Danmeng Shuai, Department of Civil and Environmental Engineering, University of Iowa

Aquifer recharge with treated wastewater represents a promising route to sustainable groundwater resources, but it is currently limited by the energy intensity and treatment costs needed to generate high quality effluent. Here, we develop an innovative wastewater treatment operation to destroy chemical pollutants by converting waste heat into oxidizing equivalents using pyroelectric materials. Specific tasks include (i) synthesis and characterization of pyroelectric materials (e.g., LiNbO3 and LiTaO3), which convert temperature gradients into chemical energy (e.g., oxidizing and reducing equivalents), with systematically varied physicochemical properties; (ii) performance optimization of these pyroelectric materials toward model pollutants under various water chemistries including those representative of wastewater; and (iii) a preliminary environmental impact assessment addressing the energy footprint and sustainability of this innovative technology relative to other advanced treatment processes. Outcomes will move society closer to water sustainability via an energy efficient treatment technology that promotes beneficial water reuse.  $29,700

Development of a Late Holocene Decadal-Scale Proxy Record of the North Atlantic Oscillation from Portuguese Stalagmites – Rhawn Denniston, Department of Geology, Cornell College

The North Atlantic Oscillation (NAO) is a persistent climatic phenomenon reflecting an atmospheric pressure dipole between Iceland and Portugal and is tied to climatic anomalies around the Northern Hemisphere, including seasonal temperature and precipitation patterns in Europe, Asia, and the United States. Recent paleoclimatic data suggest that in contrast to frequently changing NAO behavior evident in historical records, NAO modes may have become entrenched in previous centuries, yielding long-lasting climatic regimes. For example, analyses of Scottish stalagmites and Moroccan tree rings suggest that the Medieval Climate Anomaly resulted, in part, from a persistent positive mode of the NAO while the Little Ice Age reflected more negative NAO indexes. However, the fidelity of these data has been questioned and high resolution paleoenvironmental records from other NAO-sensitive areas are required to address this uncertainty. This research proposes to develop a precisely dated, decadal-resolution stalagmite isotopic time series from western Portugal, the climate of which is strongly influenced by the NAO, as a means of examining NAO variability over the late Holocene (the last ~3,000 years).  $30,000

Impacts of Extended Drought Conditions and Global Warming on Groundwater Resources in Iowa and the Upper Midwest – Kristie J. Franz, William W. Simpkins, and Ozlem Acar, Department of Geological and Atmospheric Sciences, Iowa State University

Extended drought conditions that affected much of the US throughout 2012 and continued into 2013 are bringing climate change to the forefront of public attention. Long-term effects of an extended dry spell on groundwater is especially concerning as these resources are essential for meeting drinking water demands, supporting agricultural and industrial activities, and maintaining water levels in rivers and lakes. Thus, the impact of extended drought conditions on the entire hydrologic cycle needs to be well understood to guide future resource and land management decisions. We propose to explore the impact of extended drought conditions on groundwater resources in a representative Iowa watershed using Regional Climate Model scenarios implemented through HydroGeoSphere, a physically-based, surface water-groundwater model. This will complement our current efforts in the South Fork watershed to quantify the impact of agricultural drainage on flooding using this model.  29,548

Theoretical Description of Nanomaterials for Water Remediation – Sara E. Mason, Department of Chemistry, University of Iowa

Developing countries and rural farms are at elevated risk for arsenic (As) contaminated waters, mandating durable and cost-effective treatment methods. Recent research highlights affordable nanomaterials that are promising co-precipitation agents due to properties such as high surface area. Polyaluminumchloride (PACl) with high levels of theAl30 nanocluster (Al30O8(OH)56(H2O)2618+) has been shown to improve the removal efficiency of As over a broad range of pH. However, the underlying physiochemical properties of Al30 are not known, preventing optimization of Al30 usage.  We will use quantum-based simulations to model Al30 interactions with As species. Calculations of energetic, geometric, and electrostatic properties for arrangements of As adsorption on Al30 will be used to characterize bonding interactions as a function of nanocluster functional groups.  By developing a theoretical framework of cluster-As interactions, this simulation work may direct experimental studies of Al30, and ultimately may direct the engineering of PACl water remediation strategies.  $30,000

Groundwater Sustainability in Agriculturally Dominated Watersheds:  A Case-Study in Mewat District, Haryana, India – Adam Ward, Department of Geoscience and Marian Muste, Department of Civil and Environmental Engineering, University of Iowa

Freshwater in Mewat (Haryana, India) is a limited resource, with only 61 of 503 villages having access to safe groundwater, leading to a range of social, economic, and human health impacts. In those villages with freshwater, supplies are expected to be entirely depleted in 10-15 years.  Water consumption supports both domestic use and agricultural production. This project will develop a numerical model of current conditions and test future scenarios based on climate change, land use decisions, and governmental interventions. Hydrologic modeling of current and future scenarios will be used to estimate the Water Poverty Index, a single term integrating wellbeing of social, economic, and natural systems. All project data and results will be included in a cyberinfrastructure system for stakeholder use. The overarching objective of this work is to develop a sustainable water management strategy for Mewat.  $29,897


Tuesday, January 1, 2013